January 2016

A while ago searching around on ebay for geeky/nerdy toys i found some Thermoelectric coolers/peltiers for around 2$ with free shipping. So i bought a few of them …

They all worked fine, one had a hole in its silicon sealant though which ive “fixed” with hot glue (first heated the element up to reduce moisture inside then re-sealed it), i dont remember why i didnt use silicon …

I experimented a bit around with 1 and 2 stage TECs on a old heat-sink + fan that was laying around, the best combination interestingly was 2 stages first at 12V 2nd at 5V. though the gain for 2 stages over 1 stage was disappointingly small, IIRC a little over 10°C. Its also interesting to note that my chinese IR thermometer was not able to measure the temperature of the frosted top, it displayed way too low values. Actual real lowest value achieved was measured with a Type K thermocouple, frozen onto the TEC in a drop of water and frosted over for a while (the snowy stuff that forms should provides some extra isolation).
The 2 TECs in above are attached with cable ties, which was very limiting in what could be placed on top

For some reason yesterday i decided to test using the TECs for heating instead of cooling by reversing the input polarity.
That indeed worked and the same device happily boiled drops of water. I didnt think too deep about what the maximum temperature for the TECs was, i didnt expect failure below 180°C, but the top element died at probably around 120-130°C (K type thermocouple in drop of oil on top).
Not entirely believing the apparent facts, i picked another unused separate TEC1-12706 and retried, heating it to 160°C
which seems to have done no harm to it. Though i used the IR thermometer for measuring the 160°C, i should retry this probably with both thermometers but then according to the ebay article page they are max 70°C ;)

Breaking my TEC cooler toy i took it and the failed TEC element apart, Its failure mode was that it showed >10megohm resistance. Cutting its sealant away, it looked like this:
IMG_0460-1280 IMG_0461-1280

And separating it further with a tiny bit of heat and force (probably only heat was needed)

Also interestingly none of the remaining individual elements tested open, they all had low resistance. I know nothing about TEC failure modes but i wonder if one little part had just cracked from the heat and maybe mechanical stress. They are all in series so one cracking the wrong way should show similar symptoms …

To rebuild the TEC2-toy now ver2, i placed a piece of aluminum on top and tried to attach it with cable ties, but this proofed frustratingly unstable

My next idea of fixing it with screws, bolts, nuts or such wasnt an option as i lacked parts of sufficient length with non ridiculous diameter. So i cut 2 pieces of the same aluminum stuff and fixed it with 4 springs created out of a single larger spring separated by some foamy stuff for isolation:
IMG_0465-1280 IMG_0468-1280 IMG_0467-1280

In action:

Also i tested cooling and heating of a glass container with a liquid. (for cooling a drop of water was used as thermal component between glass and aluminum for heating a drop of minnaral oil). Without isolation, the temperature fell to +9.5°C in 1 hour and with some isolation to prevent the warm air from the fan hitting the container, to +2°C in another hour. Iam quite sure sub zero is achievable with a real attempt to prevent coolness loss but i kind of lost patience.
on the hot side i achieved 67°C with the TEC itself being at around 100°C, so if one would risk damaging the unit it might be possible to boil water in a container with it.